Pages

Monday, March 29, 2010

Electrical engineering



Electrical engineering, often referred to as the electrical and electronic engineering (EEE), is a field of engineering that generally deals with the study and application of electricity, electronics and electromagnetism. It is a very broad area that encompasses the design and study of various electrical & electronic systems, such as electrical circuits, electrical generators, electric motors, transformers, magnetic devices & materials, electromagnetic and electromechanical devices, electronic devices, electronic circuits, electronic materials, optical fibers, optoelectronic devices, computer systems, radio, television, telephony, telecommunications, wireless, microwave systems, mobile telephony, radar, data communication, computer networking, nanotechnology, photonics, microelectromechanical systems, etc.
Electrical engineering may or may not include electronic engineering. Where a distinction is made, usually outside of the United States, electrical engineering is considered to deal with the problems associated with large-scale electrical systems such as power transmission and motor control, whereas electronic engineering deals with the study of small-scale electronic systems including computers and integrated circuits.[1] Alternatively, electrical engineers are usually concerned with using electricity to transmit energy, while electronic engineers are concerned with using electricity to transmit information. More recently, the distinction has become blurred by the growth of power electronics.
The field first became an identifiable occupation in the late nineteenth century after commercialization of the electric telegraph and electrical power supply. The modern Electrical Engineering subject may cover a range of subtopics including power, microelectronics, VLSI, nanotechnology, control systems, mechatronics, robotics, nonlinear systems, computer engineering, systems analysis, signal processing, telecommunications, data communications, communication systems, information theory.

History
Main article: History of electrical engineering


The discoveries of Michael Faraday formed the foundation of electric motor technology
Electricity has been a subject of scientific interest since at least the early 17th century. The first electrical engineer was probably William Gilbert who designed the versorium: a device that detected the presence of statically charged objects. He was also the first to draw a clear distinction between magnetism and static electricity and is credited with establishing the term electricity.[2] In 1775 Alessandro Volta's scientific experimentations devised the electrophorus, a device that produced a static electric charge, and by 1800 Volta developed the voltaic pile, a forerunner of the electric battery.[3]
However, it was not until the 19th century that research into the subject started to intensify. Notable developments in this century include the work of Georg Ohm, who in 1827 quantified the relationship between the electric current and potential difference in a conductor, Michael Faraday, the discoverer of electromagnetic induction in 1831, and James Clerk Maxwell, who in 1873 published a unified theory of electricity and magnetism in his treatise Electricity and Magnetism.[4]


Thomas Edison built the world's first large-scale electrical supply network
During these years, the study of electricity was largely considered to be a subfield of physics. It was not until the late 19th century that universities started to offer degrees in electrical engineering. The Darmstadt University of Technology founded the first chair and the first faculty of electrical engineering worldwide in 1882. In the same year, under Professor Charles Cross, the Massachusetts Institute of Technology began offering the first option of Electrical Engineering within a physics department.[5] In 1883 Darmstadt University of Technology and Cornell University introduced the world's first courses of study in electrical engineering, and in 1885 the University College London founded the first chair of electrical engineering in the United Kingdom.[6] The University of Missouri subsequently established the first department of electrical engineering in the United States in 1886.[7]


Nikola Tesla made long-distance electrical transmission networks possible.
During this period, the work concerning electrical engineering increased dramatically. In 1882, Edison switched on the world's first large-scale electrical supply network that provided 110 volts direct current to fifty-nine customers in lower Manhattan. In 1884 Sir Charles Parsons invented the steam turbine which today generates about 80 percent of the electric power in the world using a variety of heat sources. In 1887, Nikola Tesla filed a number of patents related to a competing form of power distribution known as alternating current. In the following years a bitter rivalry between Tesla and Edison, known as the "War of Currents", took place over the preferred method of distribution. AC eventually replaced DC for generation and power distribution, enormously extending the range and improving the safety and efficiency of power distribution.
The efforts of the two did much to further electrical engineering—Tesla's work on induction motors and polyphase systems influenced the field for years to come, while Edison's work on telegraphy and his development of the stock ticker proved lucrative for his company, which ultimately became General Electric. However, by the end of the 19th century, other key figures in the progress of electrical engineering were beginning to emerge.[8]
Modern developments
During the development of radio, many scientists and inventors contributed to radio technology and electronics. In his classic UHF experiments of 1888, Heinrich Hertz transmitted (via a spark-gap transmitter) and detected radio waves using electrical equipment. In 1895, Nikola Tesla was able to detect signals from the transmissions of his New York lab at West Point (a distance of 80.4 km / 49.95 miles).[9] In 1897, Karl Ferdinand Braun introduced the cathode ray tube as part of an oscilloscope, a crucial enabling technology for electronic television.[10] John Fleming invented the first radio tube, the diode, in 1904. Two years later, Robert von Lieben and Lee De Forest independently developed the amplifier tube, called the triode.[11] In 1895, Guglielmo Marconi furthered the art of hertzian wireless methods. Early on, he sent wireless signals over a distance of one and a half miles. In December 1901, he sent wireless waves that were not affected by the curvature of the Earth. Marconi later transmitted the wireless signals across the Atlantic between Poldhu, Cornwall, and St. John's, Newfoundland, a distance of 2,100 miles (3,400 km).[12] In 1920 Albert Hull developed the magnetron which would eventually lead to the development of the microwave oven in 1946 by Percy Spencer.[13][14] In 1934 the British military began to make strides toward radar (which also uses the magnetron) under the direction of Dr Wimperis, culminating in the operation of the first radar station at Bawdsey in August 1936.[15]
In 1941 Konrad Zuse presented the Z3, the world's first fully functional and programmable computer.[16] In 1946 the ENIAC (Electronic Numerical Integrator and Computer) of John Presper Eckert and John Mauchly followed, beginning the computing era. The arithmetic performance of these machines allowed engineers to develop completely new technologies and achieve new objectives, including the Apollo missions and the NASA moon landing.[17]
The invention of the transistor in 1947 by William B. Shockley, John Bardeen and Walter Brattain opened the door for more compact devices and led to the development of the integrated circuit in 1958 by Jack Kilby and independently in 1959 by Robert Noyce.[18] Starting in 1968, Ted Hoff and a team at Intel invented the first commercial microprocessor, which presaged the personal computer. The Intel 4004 was a 4-bit processor released in 1971, but in 1973 the Intel 8080, an 8-bit processor, made the first personal computer, the Altair 8800, possible

Electrical engineering has many sub-disciplines, the most popular of which are listed below. Although there are electrical engineers who focus exclusively on one of these sub-disciplines, many deal with a combination of them. Sometimes certain fields, such as electronic engineering and computer engineering, are considered separate disciplines in their own right.
Power
Main article: Power engineering


Power pole
Power engineering deals with the generation, transmission and distribution of electricity as well as the design of a range of related devices. These include transformers, electric generators, electric motors, high voltage engineering and power electronics. In many regions of the world, governments maintain an electrical network called a power grid that connects a variety of generators together with users of their energy. Users purchase electrical energy from the grid, avoiding the costly exercise of having to generate their own. Power engineers may work on the design and maintenance of the power grid as well as the power systems that connect to it. Such systems are called on-grid power systems and may supply the grid with additional power, draw power from the grid or do both. Power engineers may also work on systems that do not connect to the grid, called off-grid power systems, which in some cases are preferable to on-grid systems. The future includes Satellite controlled power systems, with feedback in real time to prevent power surges and prevent blackouts.
Control
Main article: Control engineering


Control systems play a critical role in space flight
Control engineering focuses on the modeling of a diverse range of dynamic systems and the design of controllers that will cause these systems to behave in the desired manner. To implement such controllers electrical engineers may use electrical circuits, digital signal processors, microcontrollers and PLCs (Programmable Logic Controllers). Control engineering has a wide range of applications from the flight and propulsion systems of commercial airliners to the cruise control present in many modern automobiles. It also plays an important role in industrial automation.
Control engineers often utilize feedback when designing control systems. For example, in an automobile with cruise control the vehicle's speed is continuously monitored and fed back to the system which adjusts the motor's power output accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback.

No comments:

Post a Comment